Advances in Active Microwave Frequency Multipliers

Kelvin Yuk and G.R. Branner
Electrical and Computer Engineering
University of California, Davis, CA USA
http://www.ece.ucdavis.edu/mdasl/

9 August 2011
Tp1F - P10_1044
Outline

• Introduction
• System Development
• Technologies
• Topologies
• State of the Art
• Conclusions
Introduction

- Frequency multipliers + LO used for signal generation in transceivers
 - Enable LO to be used at higher micro-/mm-wave
 - Alleviate system level freq constraints
 - Improves stability/phase noise performance [1] [34]

- This work overviews the state of the art
 - Conversion gain (CG), output power (Pout)
 - Millimeter-wave operation
• Building block of comm. systems
• Frequency synthesizer [2]
 - Phase-locked loop
 - Design constraints
• Digital Broadcast Systems (DBS) [5]
 - Shared Uplink/downlink
• **Dual-band Wifi transmitters [4]**
 - IEEE 802.11: 2.4GHz/5.8GHz
 - Switchable dual-band LO + PA/frequency multiplier
 - Two modules in one

• **Automotive radar 77GHz [7]**
 - Close to fT of some technologies
 - Noise performance of MMIC LO’s designed directly at 77GHz suffers
 - Use freq doublers
• Many advances are due to technology
• Indium phosphide (InP)
 - Very high freq applications >100GHz
 - Less dc power, less heat, better CG
 - MMIC-capable
• GaAs metamorphic HEMT (mHEMT)
 - GaAs substrate + InP-heterostructure
 • Metamorphic buffer layer (graded composition) [32]
 - better mechanical stability, larger wafer size availability, lower cost than InP [24]
• Silicon-based
 - Low cost, high volume commercial availability
 - CMOS
 - SiGe BiCMOS
 • Very high frequency operation
 • Integration with CMOS

• GaAs
 - Good balance between frequency and power

• AlGaN/GaN HEMT
 - High conversion gain
 - Unparalleled output power
• Single-Ended (S.-E.)
 - Single device
 - Biased using conduction angle
 - Utilizes tuned networks for harmonic rejection, matching
 - Narrowband

• Balanced (Bal.)
 - Two devices
 - Biased using conduction angle
 - Doubler:
 • Input balun, combining network
 • 2fo adds, 1fo cancels
 - Broadband performance
 - More complex, mismatch
Topologies 3

- **Subharmonic mixer-based triplers (SHM)** [10]
 - Output of a doubler mixed with fedforward f_0
 - Filter out f_0

- **Injection-locked frequency multipliers (ILFM)** [12]
 - Two-stage: harmonic pre-generator, injection-locked oscillator
 - Well-suited for CMOS
Topologies 4

- **Active tripler + Auxiliary diode tripler [17]**
 - Provides supplementary 3fo from residual fo of active tripler
 - Improves dynamic range

- **Enhanced tripler technique using waveform “deep cuts” [16]**
 - Create deep cuts in fo for strong 3fo
 - CMOS nonlinear combiner perform operation
• Application of PA techniques, descriptions and classifications to increase efficiency

• Class E frequency tripler [18]
 - Eta= 57%

• Class F frequency doubler [19]
 - Eta=22%

• Narrowband
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Technology</th>
<th>Top./ Real.</th>
<th>N</th>
<th>Freq Out GHz</th>
<th>CG dB</th>
<th>Pout dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>[20]</td>
<td>0.15um GaAs pHEMT</td>
<td>Bal.*/MMIC</td>
<td>2</td>
<td>15-50</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>[21]</td>
<td>0.5um GaAs FET</td>
<td>Bal.*/MMIC</td>
<td>2</td>
<td>20-42</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>[22]</td>
<td>0.15um GaAs pHEMT</td>
<td>Bal.*/MMIC</td>
<td>2</td>
<td>12-16</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>[23]</td>
<td>2um GaAs HBT</td>
<td>Bal.**/MMIC</td>
<td>2</td>
<td>29-33</td>
<td>6.1</td>
<td>10.1</td>
</tr>
<tr>
<td>[15]</td>
<td>GaAs FET</td>
<td>Bal. w LHM-TL/ Hybrid</td>
<td>2</td>
<td>1.8</td>
<td>4.93</td>
<td>9.93</td>
</tr>
<tr>
<td>[24]</td>
<td>2um InGaP/GaAs HBT</td>
<td>Bal.*/MMIC</td>
<td>2</td>
<td>4-12</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>[25]#</td>
<td>AlGaN/GaN HEMT</td>
<td>S-E/Hybrid</td>
<td>2</td>
<td>6.66</td>
<td>14.80</td>
<td>36.17</td>
</tr>
<tr>
<td>[26]#</td>
<td>0.18um GaAs HEMT</td>
<td>S-E/Hybrid</td>
<td>3</td>
<td>5.34-6.75</td>
<td>0.5</td>
<td>6</td>
</tr>
<tr>
<td>[27]#</td>
<td>GaAs pHEMT</td>
<td>S-E/Hybrid</td>
<td>3</td>
<td>8.82</td>
<td>3.67</td>
<td>9.17</td>
</tr>
<tr>
<td>[28]#</td>
<td>0.15um GaAs pHEMT</td>
<td>Bal./MMIC</td>
<td>3</td>
<td>12-36</td>
<td>-8.1</td>
<td>-0.4</td>
</tr>
<tr>
<td>[18]</td>
<td>0.25um GaAs pHEMT</td>
<td>S-E/Hybrid</td>
<td>3</td>
<td>3</td>
<td>5.5</td>
<td>6</td>
</tr>
<tr>
<td>[19]</td>
<td>GaAs E-pHEMT</td>
<td>S-E/Hybrid</td>
<td>3</td>
<td>2.475</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>[29]#</td>
<td>AlGaN/GaN HEMT</td>
<td>S-E/Hybrid</td>
<td>3</td>
<td>10</td>
<td>-2.9</td>
<td>30.0</td>
</tr>
<tr>
<td>[30]#</td>
<td>0.15um GaAs pHEMT</td>
<td>Bal.**/MMIC</td>
<td>3</td>
<td>27-42</td>
<td>-6.7</td>
<td>5</td>
</tr>
</tbody>
</table>

#meas. vs. sim, *w/buffer amp., **w/ cascode
mm-wave Freq. Mult.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Technology</th>
<th>Top./ Real.</th>
<th>N</th>
<th>Freq GHz</th>
<th>CG dB</th>
<th>Pout dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31]#</td>
<td>0.1um InP HEMT</td>
<td>S-E/MMIC</td>
<td>2</td>
<td>157-171</td>
<td>-2</td>
<td>5</td>
</tr>
<tr>
<td>[32]#</td>
<td>GaAs mHEMT</td>
<td>S-E/MMIC</td>
<td>2</td>
<td>125</td>
<td>-2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>[9]</td>
<td>InP DHBT</td>
<td>Gilb./MMIC</td>
<td>2</td>
<td>DC-120</td>
<td>-0.25</td>
<td>-8.25</td>
</tr>
<tr>
<td>[33]</td>
<td>50nm GaAs mHEMT</td>
<td>Bal./MMIC</td>
<td>2</td>
<td>150-220</td>
<td>-6</td>
<td>4</td>
</tr>
<tr>
<td>[34]#</td>
<td>50nm GaAs mHEMT</td>
<td>S-E/MMIC</td>
<td>2</td>
<td>180-220</td>
<td>-7</td>
<td>-4</td>
</tr>
<tr>
<td>[35]</td>
<td>50nm GaAs mHEMT</td>
<td>S-E/MMIC</td>
<td>2</td>
<td>250-310</td>
<td>-7.4</td>
<td>-6.4</td>
</tr>
<tr>
<td>[36]</td>
<td>0.8um SiGe BiCMOS</td>
<td>Bal./MMIC</td>
<td>2</td>
<td>64-86</td>
<td>-4.5</td>
<td>-3.4</td>
</tr>
<tr>
<td>[12]</td>
<td>65nm CMOS</td>
<td>IL*/MMIC</td>
<td>2</td>
<td>106-128</td>
<td>—</td>
<td>-2.6</td>
</tr>
<tr>
<td>[37]</td>
<td>0.13um SiGe BiCMOS</td>
<td>Bal.**/MMIC</td>
<td>2</td>
<td>118-122</td>
<td>-6</td>
<td>-3</td>
</tr>
<tr>
<td>[38]#</td>
<td>0.13um SiGe BiCMOS</td>
<td>S-E/MMIC</td>
<td>2</td>
<td>128-138</td>
<td>-3.2</td>
<td>-2.9</td>
</tr>
<tr>
<td>[34]#</td>
<td>50nm GaAs mHEMT</td>
<td>S-E/MMIC</td>
<td>3</td>
<td>140</td>
<td>-11</td>
<td>-1.5</td>
</tr>
<tr>
<td>[39]</td>
<td>90nm CMOS</td>
<td>IL*/MMIC</td>
<td>3</td>
<td>56.4-64.5</td>
<td>--</td>
<td>-24.7</td>
</tr>
<tr>
<td>[40]</td>
<td>0.18um CMOS</td>
<td>IL*/MMIC</td>
<td>3</td>
<td>60</td>
<td>--</td>
<td>-9.4</td>
</tr>
<tr>
<td>[41]</td>
<td>0.15um GaAs pHEMT</td>
<td>S-E/F-C</td>
<td>3</td>
<td>93-99</td>
<td>-19</td>
<td>-12</td>
</tr>
<tr>
<td>[42]</td>
<td>0.15um GaAs mHEMT</td>
<td>Bal./MMIC</td>
<td>3</td>
<td>71-76,81-86</td>
<td>-11.5, -14</td>
<td>-2</td>
</tr>
<tr>
<td>[43]</td>
<td>0.18um CMOS</td>
<td>BPSK/MMIC</td>
<td>3</td>
<td>56-63</td>
<td>-9.4</td>
<td>-7</td>
</tr>
<tr>
<td>[44]</td>
<td>130nm GaAs mHEMT</td>
<td>S-E*/MMIC</td>
<td>3</td>
<td>77</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[45]</td>
<td>65nm CMOS</td>
<td>IL*/MMIC</td>
<td>3</td>
<td>85-95.2</td>
<td>--</td>
<td>-13.53</td>
</tr>
<tr>
<td>[46]#</td>
<td>0.13um CMOS</td>
<td>SHM/MMIC</td>
<td>3</td>
<td>36-48</td>
<td>-11.4</td>
<td>-15</td>
</tr>
<tr>
<td>[17]#</td>
<td>0.15um GaAs pHEMT</td>
<td>S-E+diode/MMIC</td>
<td>3</td>
<td>60</td>
<td>-1.6</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

meas. vs. sim, *w/buffer amp., **w/ cascode
Conclusion

• Advancements in freq. mult. for micro- and millimeter wave systems summarized
 - Applications
 - Technologies
 - Topologies
 - Innovative techniques

• Numerous research avenues have been identified

• An evaluation of the current state of the art

• Growing potential for high output and mm-wave operation

[44] Y. Kim, Y. Koh, Y. Park, K. Seo, Y. Kwon, “A CPW-based 77 GHz frequency tripler MMIC using a 130 nm In0.8GaP/In0.4AlAs/In0.35GaAs MHEMTs,” IRMMW-THz Conf., pp. 1-2, 2009.

• Gilbert-cell doubler [9]
 - fo at RF and LO mixes with itself → 2fo output
 - Suitable for fully differential CMOS MMICs
 - Limited CG (not hard limiting)
 - Class A bias
 • Higher DC power dissipation
 • Lower efficiency