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Background

• Growing interest in wide bandgap 
semiconductor technologies (SiC and GaN)

• SiC technology features

– High breakdown voltage � high RF power output

– High power density � Self-heating effects

• Applications:  PAs , • Applications:  PAs , 
mixers, oscillators …

• Large-signal CAD 
model is important

• This Work
– Cree CRF-24010 10W 

SiC MESFET



Objectives

• Develop an accurate empirical large-signal 
model capable of predicting

– IV characteristics

– Small signal S-parameters

– Harmonic power for the first three harmonics

• Challenges• Challenges

– Obtaining accurate characterization of the device

– Handling IV current dispersion “drooping” effects

– Extracting intrinsic and extrinsic parasitics

– Modeling output and input reflected harmonics

– Minimizing model complexity
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Drain Current Model

• How do we handle high power current dispersion?

• Use pulsed IV characteristics (PIV)
– Resemble static IV curves of low power devices

– Use known models with success

– Only good for one bias � not for general purpose model

– Static characteristics may be important (class A bias)

• Modify existing drain current models• Modify existing drain current models
– Add dedicated parameters to account for dispersive behavior

– Increased complexity.  Parameters may not be fully exploited.

• In this work
– Reformulate drain current equation using known mathematical 

modeling techniques

– Develop mathematical model with variable order � model IV 
characteristics of variable complexity



Original Chalmer’s Model
• Chalmer’s model
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Drain Current Equation
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• Drain current equation for this model

• Use Chalmer’s method to describe Vgs nonlinearity

• Coefficients Pn are each a power series of Vds

• Since gmpk, Ipk, Vpk not constant across Vds, use 
power series to track Pn across Vds

• Effects of Vgs and Vds are not treated as separable
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Drain Current Equation Advantages

• Polynomials
– Easy to implement, coefficients easy to determine

– Differentiable

– Mathematical order can be configured 
• Linear channel length effects (low order)

• Nonlinear channel length effects (high order)

• Chalmer’s method for Vgs relationship � P2 is • Chalmer’s method for Vgs relationship � P2 is 
eliminated

• Possible elimination of tanh(αVds) term
– linear region no different from saturation region if 

gmpk, Vpk and Ipk modeled correctly

– gmpk, Vpk and Ipk difficult to model at low Vds

• Purely electrical characterization of Ids
– No physical or temperature varying parameters



Drain Current Model – Static IV
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• Vgs=-10.0V to -4.0V, 0.5V steps, Vds=0V to 60V, 2V 

steps

• Accurate modeling of complex static characteristics
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Drain Current Model – Pulsed IV
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• Pulsed IV data 
using Auriga 
DIVA 
(Nanometrics)

• Same math form, 
variable order 
allows modeling 

0.0

0.2

0.4

0.6

0 10 20 30 40 50 60

VDS (V)

ID
S

 (
A

)
allows modeling 
of PIV 

• tanh(αVds) 
improves linear 
regime fit

• PIV drain current 
model used in 
large-signal 
model VGS=-10V to 1V, 1V steps, VDS=0V to 60V, 2V steps



Complete Model with Parasitics

Ids Cds

Lg Rg

Dgs

Dgd

Cpg Cpd

Cpgd

Rd Ld
Gate Drain

Rgs

Cgs

Cgd

• Uses standard large-signal model topology � Simple

• Parasitics extracted from S-parameter measurements

• Ids parameters optimized with parasitic resistances

• Nonlinear caps modeled with Chalmer’s charge eqs
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S-parameter Verification

• Cree CRF-24010 
biased at 
VDS=48.0V 
IDS=500mA

• Frequency range 
0.1GHz to 4.0GHz 
at -5dBm source

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08-0.10 0.10

S11
S12

at -5dBm source

• Good agreement 
with measured 
data

• Supplemental RF 
current generator 
not needed

S21 S22



Harmonic Power Verification
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• Large signal measurement system
– DUT driven at 2GHz from 10dBm to 36dBm

– Output and input reflected power for three harmonics

• No impedance matching on DUT
– Harmonic generation and power reflection

– Generalized characterization using 50 Ohms terms



Output harmonic power
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• Good agreement for three harmonics from 10dBm to 
36dBm source power at 2.0GHz for DUT biased at 
VDS=48.0V, IDS=500mA

• Up to fundamental output power of 40dBm
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Input reflected harmonic power
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• Good agreement for three harmonics from 10dBm to 
36dBm source power at 2.0GHz for DUT biased at 
VDS=48.0V, IDS=500mA

• Up to fundamental reflected power of 34dBm
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Further Work - Harmonic Power
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1936dBm incident available source power

VGS=-10V to -5.5V in 0.5V steps

VDS=0V to 55V in 5V steps

• Large signal power 
measurement over swept biases
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Conclusions

• A new, simple empirical large-signal model for 
SiC MESFETs presented

• Mathematically versatile drain equation 
combining power series with Chalmer’s model

– Static IV

– Pulsed IV – Pulsed IV 

• Large-signal SiC MESFET model can predict

– Pulsed IV characteristics

– S-parameters without RF current generator

– Large signal output and input reflected power for 

three harmonics



Acknowledgements

• Authors would like to thank the following 

people for their support and contributions 

to this work

– Dr. Giovonnae Anderson– Dr. Giovonnae Anderson

– Dr. David McQuate

– Dr. Wayne Martin



Development of our IV model

• Step 1:  Take data

• Step 2:  (Optional) Interpolate and extrapolate data if 
necessary

• Step 3:  Take the derivative of Ids wrt Vgs at every Vds 
value.  From this, find gmpk, Ipk, Vpk at every Vds.

• Step 4:  Fit gmpk, Ipk, Vpk wrt Vds to a polynomial• Step 4:  Fit gmpk, Ipk, Vpk wrt Vds to a polynomial

• Step 5:  Guess a set of P parameters at each Vds

• Step 6:  Optimize the P for every Vds.  In other words, fit 
Ids vs Vgs curve for each value of Vds.

• Step 7:  Fit the optimized P parameters as polynomial 
functions wrt to Vds.

• Step 8:  Using the fitted parameters, compute the Ids 
based on the polynomial fitted Angelov model


